[2] Kortier H G, Antonsson J, Schepers H M, et al. Hand pose estimation by fusion of inertial and magnetic sensing aided by a permanent magnet. IEEE Transactions on Neural Systems and Rehabilitation Engineering ,2014

[3] Erol A, Bebis G, Nicolescu M, et al. Vision-based hand pose estimation: A review. Computer Vision and Image Understanding, 2007, 108(1): 52-73.

[4] Romero J, Kjellstrom H, Kragic D. Monocular real-time 3D articulated hand pose estimation. Humanoid Robots, 2009: 87-92.

[5] Doliotis P, Athitsos V, Kosmopoulos D, et al. Hand shape and 3d pose estimation using depth data from a single cluttered frame. Advances in Visual Computing, 2012: 148-158.

[6] Keskin C, K?ra? F, Kara Y E, et al. Real time hand pose estimation using depth sensors. Consumer Depth Cameras for Computer Vision, 2013: 119-137.

[7] De La Gorce M, Fleet D J, Paragios N. Model-based 3d hand pose estimation from monocular video. Pattern Analysis and Machine Intelligence, 2011, 33(9): 1793-1805.

[8] Oikonomidis I, Kyriazis N, Argyros AA. Efficient model-based 3D tracking of hand articulations using Kinect. BMVC. 2011, 1(20): 33-38.

[9] Tompson J, Stein M, Lecun Y, et al. Real-time continuous pose recovery of human hands using convolutional networks. ACM Transactions on Graphics, 2014, 33(5): 169-177.

[10] Liang H, Yuan J, Thalmann D, et al. Model-based hand pose estimation via spatial-temporal hand parsing and 3D fingertip localization. The Visual Computer, 2013, 29(6-8): 837-848.

[11] Albrecht I, Haber J, Seidel H P. Construction and animation of anatomically based human hand models. Proceedings of the 2003 ACM Eurographics symposium on Computer animation, 2003: 98-109.

[12] Rodman L. Topics in Quaternion Linear Algebra. Princeton University Press, 2014,123-135.

[13] Kinect, http://www.xbox.com/en-US/kinect.

[14] Zhang Z. A flexible new technique for camera calibration. Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.

[15] Tang H, Feng Z. Hand’s skin detection based on ellipse clustering. Computer Science and Computational Technology, 2008( 2): 758-761.

[16] Kennedy J.“Swarm intelligence,” Handbook of Nature Inspired and Innovative Computing, pp. 187–219, 2006.

[17] Yasuda T, Matsumura Y, Ohkura K , Extended pso with partial randomization for large scale multimodal problems, World Automation Congress , 2010, 1–6.","bibtexUrl_cn":"//www.sanmikaiseki.com/jns/CN/article/getTxtFile.do?fileType=BibTeX&id=537","abstractUrl_en":"https://jns.nju.edu.cn/EN/Y2015/V51/I2/297","qi":"2","id":537,"nian":2015,"bianHao":"201412011","zuoZheEn_L":"Zhou Wenmeng1,Yang Yipin1, Zhou Yu1, Yu Yao1, Jin Suwen2, Du Sidan1*","juanUrl_en":"https://jns.nju.edu.cn/EN/Y2015","shouCiFaBuRiQi":"2015-03-31","qiShiYe":"297","qiUrl_cn":"//www.sanmikaiseki.com/jns/CN/Y2015/V51/I2","lanMu_cn":"","pdfSize":"1550955","zuoZhe_CN":"周文猛1,杨一品1,周余1,于耀1,金苏文2,都思丹1*","risUrl_cn":"//www.sanmikaiseki.com/jns/CN/article/getTxtFile.do?fileType=Ris&id=537","title_cn":"基于Kinect的无标记手部姿态估计系统","jieShuYe":"","endNoteUrl_cn":"//www.sanmikaiseki.com/jns/CN/article/getTxtFile.do?fileType=EndNote&id=537","zhaiyao_en":"As computer technology is developing, more and more human-computer interaction methods come out, such as voice control, hand control and human body control. In this paper, we present a novel approach to recover and track the 3D position, orientation and the full articulated information of a human hand from a video sequence obtained by a Kinect sensor. By using Particle Swarm Optimization (PSO) variant to minimize the cost function which quantifies the discrepancy between projected model and the ground truth observations , we can get the motion parameters of the hand observed by the Kinect sensor. In order to accelerate PSO, continuity over frame sequence is exploited by setting the initial states of particles of current frame to the optimized ones of the previous frame. Moreover, GPU acceleration is adopted due to the inherent parallelization and optimized for images processing of hands. The overall system does not need any markers or special environment and c an be performed in 20Hz","bibtexUrl_en":"https://jns.nju.edu.cn/EN/article/getTxtFile.do?fileType=BibTeX&id=537","abstractUrl_cn":"https://jns.nju.edu.cn/CN/Y2015/V51/I2/297","zuoZheCn_L":"周文猛1,杨一品1,周余1,于耀1,金苏文2,都思丹1*","juanUrl_cn":"https://jns.nju.edu.cn/CN/Y2015","lanMu_en":"","qiUrl_en":"https://jns.nju.edu.cn/EN/Y2015/V51/I2","zuoZhe_EN":"Zhou Wenmeng1,Yang Yipin1, Zhou Yu1, Yu Yao1, Jin Suwen2, Du Sidan1*","risUrl_en":"https://jns.nju.edu.cn/EN/article/getTxtFile.do?fileType=Ris&id=537","title_en":"Markerless hand pose estimation system using Kinect","hasPdf":"true"},"authorNotes_cn":["(1.南京大学电子科学与工程学院,南京,210023;2.上海协同科技,上海,200063)"]}">

基于Kinect的无标记手部姿态估计系统

周文猛1,杨一品1,周余1,于耀1,金苏文2,都思丹1*

南京大学学报(自然科学版)››2015, Vol. 51››Issue (2): 297.

PDF(1550955 KB)
PDF(1550955 KB)
南京大学学报(自然科学版) ›› 2015, Vol. 51 ›› Issue (2) : 297.

基于Kinect的无标记手部姿态估计系统

    {{javascript:window.custom_author_cn_index=0;}}
  • {{article.zuoZhe_CN}}
作者信息 +

Markerless hand pose estimation system using Kinect

    {{javascript:window.custom_author_en_index=0;}}
  • {{article.zuoZhe_EN}}
Author information +
文章历史 +

本文亮点

{{article.keyPoints_cn}}

HeighLight

{{article.keyPoints_en}}

摘要

{{article.zhaiyao_cn}}

Abstract

{{article.zhaiyao_en}}

关键词

Key words

本文二维码

引用本文

导出引用
{{article.zuoZheCn_L}}.{{article.title_cn}}[J]. {{journal.qiKanMingCheng_CN}}, 2015, 51(2): 297
{{article.zuoZheEn_L}}.{{article.title_en}}[J]. {{journal.qiKanMingCheng_EN}}, 2015, 51(2): 297
中图分类号:

参考文献

参考文献

{{article.reference}}

基金


编委:
主编:
责任编辑:
编辑:

版权

{{article.copyrightStatement_cn}}
{{article.copyrightLicense_cn}}
PDF(1550955 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map