[2] 唐琎 李青. 一种快速的模板匹配算法. 计算机应用, 2010, 30(06): 1559-1561.
[3] 高凯亮, 覃团发, 陈跃波, 等. 一种混合高斯背景模型下的像素分类运动目标检测方法. 南京大学学报: 自然科学版, 2011, 47(2): 195-200.
[4] 余孔梁. 基于视频的车型识别技术研究. 浙江: 浙江大学, 2008.
[5]郭德全, 杨红雨, 刘东权, 等. 基于稀疏性的图像去噪综述. 计算机应用研究, 2012, 29(2): 406-413.
[7] 徐焕宇, 孙权森, 李大禹, 等. 基于投影的稀疏表示与非局部正则化图像复原方法. 电子学报, 2014 , 42(7): 1299-1304.
[8] Yang J, Yu K, Gong Y, et al. Linear spatial pyramid matching using sparse coding for image classification//Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009: 1794-1801.
[9] Han B, Davis L S. Density-based multifeature background subtraction with support vector machine[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2012, 34(5): 1017-1023.
[10] Zivkovic Z, van der Heijden F. Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern recognition letters, 2006, 27(7): 773-780.
[11] Lee H, Battle A, Raina R, et al. Efficient sparse coding algorithms//Advances in neural information processing systems. 2006: 801-808.
[12] Horng S J, Su M Y, Chen Y H, et al. A novel intrusion detection system based on hierarchical clustering and support vector machines. Expert systems with Applications, 2011, 38(1): 306-313.
[13] 白龙飞, 王文剑, 郭虎升. 一种新的支持向量机主动学习策略[J]. 南京大学学报: 自然科学版, 2012, 48(2): 182.
[14] 包文颖, 胡清华, 王长忠. 基于多粒度数据压缩的支持向量机. 南京大学学报 (自然科学版), 2013, 5: 014.

","bibtexUrl_cn":"//www.sanmikaiseki.com/jns/CN/article/getTxtFile.do?fileType=BibTeX&id=510","abstractUrl_en":"https://jns.nju.edu.cn/EN/Y2015/V51/I2/264","qi":"2","id":510,"nian":2015,"bianHao":"201409092","zuoZheEn_L":"Zhang PengHuang YiChen Qimei*","juanUrl_en":"https://jns.nju.edu.cn/EN/Y2015","shouCiFaBuRiQi":"2015-03-02","qiShiYe":"264","qiUrl_cn":"//www.sanmikaiseki.com/jns/CN/Y2015/V51/I2","lanMu_cn":"","pdfSize":"1399952","zuoZhe_CN":"张鹏,黄毅,阮雅端,陈启美*","risUrl_cn":"//www.sanmikaiseki.com/jns/CN/article/getTxtFile.do?fileType=Ris&id=510","title_cn":"基于稀疏特征的交通流视频检测算法","jieShuYe":"270","endNoteUrl_cn":"//www.sanmikaiseki.com/jns/CN/article/getTxtFile.do?fileType=EndNote&id=510","zhaiyao_en":"The accuracy of traditional traffic flow detection based on background modeling is not high,because it is susceptible to external environmental interference.In this paper,a video-based traffic flow detection algorithm using sparse feature is propsed.Moving objects are firstly detected with Gaussian mixture background modeling method.Then the scale-invariant feature transform(SIFT) of the objects are calculated and sparse coding is used to handle the SIFT.For the purpose of reducing sparse feature dimensions,the max pooling strategy is introduced.Afterwards,the pooling-process results are used to train the linear support vector machine(SVM).Finally,we use the SVM to remove the negative samples,thus calculate better traffic flow parameters.Test results show that our algorithm has outstanding performance on low resolution images:the negative sample removal rate is 60% to 80%, accuracy improved 12% to 17% higher than background modeling method","bibtexUrl_en":"https://jns.nju.edu.cn/EN/article/getTxtFile.do?fileType=BibTeX&id=510","abstractUrl_cn":"https://jns.nju.edu.cn/CN/Y2015/V51/I2/264","zuoZheCn_L":"张鹏,黄毅,阮雅端,陈启美*","juanUrl_cn":"https://jns.nju.edu.cn/CN/Y2015","lanMu_en":"","qiUrl_en":"https://jns.nju.edu.cn/EN/Y2015/V51/I2","zuoZhe_EN":"Zhang PengHuang YiChen Qimei*","risUrl_en":"https://jns.nju.edu.cn/EN/article/getTxtFile.do?fileType=Ris&id=510","title_en":"Traffic flow detection algorithm based on sparse feature","hasPdf":"true"},"authorNotes_cn":["(南京大学电子科学与工程学院,南京,210023)"]}">

基于稀疏特征的交通流视频检测算法

张鹏,黄毅,阮雅端,陈启美*

南京大学学报(自然科学版)››2015, Vol. 51››Issue (2): 264-270.

PDF(1399952 KB)
PDF(1399952 KB)
南京大学学报(自然科学版) ›› 2015, Vol. 51 ›› Issue (2) : 264-270.

基于稀疏特征的交通流视频检测算法

    {{javascript:window.custom_author_cn_index=0;}}
  • {{article.zuoZhe_CN}}
作者信息 +

Traffic flow detection algorithm based on sparse feature

    {{javascript:window.custom_author_en_index=0;}}
  • {{article.zuoZhe_EN}}
Author information +
文章历史 +

本文亮点

{{article.keyPoints_cn}}

HeighLight

{{article.keyPoints_en}}

摘要

{{article.zhaiyao_cn}}

Abstract

{{article.zhaiyao_en}}

关键词

Key words

本文二维码

引用本文

导出引用
{{article.zuoZheCn_L}}.{{article.title_cn}}[J]. {{journal.qiKanMingCheng_CN}}, 2015, 51(2): 264-270
{{article.zuoZheEn_L}}.{{article.title_en}}[J]. {{journal.qiKanMingCheng_EN}}, 2015, 51(2): 264-270
中图分类号:

参考文献

参考文献

{{article.reference}}

基金


编委:
主编:
责任编辑:
编辑:

版权

{{article.copyrightStatement_cn}}
{{article.copyrightLicense_cn}}
PDF(1399952 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map