502022220083@smail.nju.edu.cn
"],"authorList":[{"deceased":false,"name_cn":"刁文青","name_en":"Wenqing Diao"},{"deceased":false,"name_cn":"刘子豪","name_en":"Zihao Liu"},{"deceased":false,"name_cn":"裴宁我","name_en":"Ningwo Pei"}],"affList_en":["1.School of Physics,Nanjing University,Nanjing,210093,China
2.School of Mathematics and Physics,Anhui Jianzhu University,Hefei,230009, China"],"affList_cn":["1.南京大学物理学院,南京,210093
2.安徽建筑大学数理学院,合肥,230009"],"article":{"keywordList_cn":["声学超材料","亥姆霍兹共鸣器","宽带隔声","遗传算法优化"],"juan":"61","zhaiyao_cn":"

在不阻碍管道中气流的前提下,有效消除低频噪声是当前噪声控制领域的热点问题.管道内置型的隔声结构设计具有重要的理论研究价值与实际应用需求.以亥姆霍兹共鸣器结构为基础,结合遗传算法,设计并优化出一种新型通风声屏障.首先,对比具有相同表面积的不同形状喉管的声波阻碍性能差异;随后,分析了谐振腔以串联、并联及线性排列等方式构成的结构在传输损失方面的差异,并通过理论计算与仿真结果对比来评估其声学性能,确定了最优结构形式;最后,结合遗传优化算法对并联共鸣器的参数进行联合优化,精确设计喉管与腔体的几何参数,最终形成了两组并联的谐振腔阵列构成的声屏障结构.在亚波长尺寸与通风条件下,该结构可以在低频频段(314~1000 Hz)实现声强透射系数降至0.1.

","endNoteUrl_en":"https://jns.nju.edu.cn/EN/article/getTxtFile.do?fileType=EndNote&id=1755","reference":"
[1] Mei J, Ma G C, Yang M,et al. Dark acoustic metamaterials as super absorbers for low?frequency sound. Nature Communications20123(1):756.
[2] Wu W Q, Zhang Y B, Xu L,et al. Design and evaluation of an acoustic metamaterial for ducted fan noise control. Applied Acoustics2025,233:110612.
[3] Li T Y, Lian S Y, Zhao S P,et al. Distributed active noise control based on an augmented diffusion FxLMS algorithm. IEEE/ACM Transactions on Audio,Speech,and Language Processing2023,31:1449-1463.
[4] António J M P, Tadeu A, Godinho L. Analytical evaluation of the acoustic insulation provided by double infinite walls. Journal of Sound and Vibration2003263(1):113-129.
[5] Bolton J S, Shiau N M, Kang Y J. Sound transmission through multi?panel structures lined with elastic porous materials. Journal of Sound and Vibration1996191(3):317-347.
[6] Makris S E, Dym C L, Smith J M. Transmission loss optimization in acoustic sandwich panels. The Journal of the Acoustical Society of America198679(6):1833-1843.
[7] Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ . Soviet Physics Uspekhi196810(4):509-514.
[8] Sheng P, Zhang X X, Liu Z,et al. Locally resonant sonic materials. Physica B:Condensed Matter2003338(1-4):201-205.
[9] Ma P W, Wang H, Li D W,et al. Passive acoustic liners for aero?engine noise control:A review. Mechanics of Advanced Materials and Structures202431(30):12834-12849.
[10] Kumar S, Lee H P. Recent advances in acoustic metamaterials for simultaneous sound attenuation and air ventilation performances. Crystals202010(8):686.
[11] Liao Y, Huang H B, Chang G B,et al. Research on low?frequency noise control of automobiles based on acoustic metamaterial. Materials202215(9):3261.
[12] Ma F Y, Huang M, Wu J H. Acoustic metamaterials with synergetic coupling. Journal of Applied Physics2017122(21):215102.
[13] Zhao H G, Wen J H, Yang H B,et al. Backing effects on the underwater acoustic absorption of a viscoelastic slab with locally resonant scatterers. Applied Acoustics2014,76:48-51.
[14] Zhang Y N, Cheng L. Ultra?thin and broadband low?frequency underwater acoustic meta?absorber. International Journal of Mechanical Sciences2021,210:106732.
[15] Ma G C, Yang M, Xiao S W,et al. Acoustic metasurface with hybrid resonances. Nature Materials201413(9):873-878.
[16] Yu W W, Fan L, Ma R H,et al. Low?frequency and multiple?bands sound insulation using hollow boxes with membrane?type faces. Applied Physics Letters2018112(18):183506.
[17] Aurégan Y. Ultra?thin low frequency perfect sound absorber with high ratio of active area. Applied Physics Letters2018113(20):201904.
[18] Wang T M, Gong C, Zhang S Y,et al. An acoustic metaliner for ultra?broadband sound absorption. Applied Physics Letters2023123(16):161704.
[19] Kumar S, Lee H P. Labyrinthine acoustic metastructures enabling broadband sound absorption and ventilation. Applied Physics Letters2020116(13):134103.
[20] Long H Y, Shao C, Liu C,et al. Broadband near?perfect absorption of low?frequency sound by subwavelength metasurface. Applied Physics Letters2019115(10):103503.
[21] Zieliński T G, Opiela K C, Dauchez N,et al. Extremely tortuous sound absorbers with labyrinthine channels in non?porous and microporous solid skeletons. Applied Acoustics2024,217:109816.
[22] 马大猷. 亥姆霍兹共鸣器. 声学技术200221(1):2-3.
[23] Cai C Z, Mak C M. Acoustic performance of different Helmholtz resonator array configurations. Applied Acoustics2018,130:204-209.
[24] 王正敏,饶伟,李德玉. 封闭腔体噪声控制中亥姆霍兹共振器的优化设计方法. 声学学报201944(5):834-842.
[25] Gao Y X, Cheng Y, Liang B,et al. Acoustic skin meta?muffler. Science China Physics,Mechanics & Astronomy,202164(9):294311.
[26] Bi S H, Wang E S, Shen X M,et al. Enhancement of sound absorption performance of Helmholtz resonators by space division and chamber grouping. Applied Acoustics2023,207:109352.
[27] Fang N, Xi D J, Xu J Y,et al. Ultrasonic metamaterials with negative modulus. Nature Materials20065(6):452-456.
[28] Lee S H, Park C M, Seo Y M,et al. Acoustic metamaterial with negative modulus. Journal of Physics:Condensed Matter200921(17):175704.
[29] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature2015521(7553):436-444.
[30] Jiang J Q, Chen M K, Fan J A. Deep neural networks for the evaluation and design of photonic devices. Nature Reviews Materials20206(8):679-700.
[31] Li L L, Ruan H X, Liu C,et al. Machine?learning reprogrammable metasurface imager. Nature Communications201910(1):1082.
[32] Zhang X H, Yu Q, Zhao C Y,et al. Modular reverse design of acoustic metamaterial and sound barrier engineering applications:High ventilation and broadband sound insulation. Thin?Walled Structures2024,196:111498.
[33] 程建春. 声学原理. 北京:科学出版社,2012,467-479.
[34] Munjal M L. Acoustics of ducts and mufflers. 2nd ed. Chichester,West Sussex,United Kingdom:John Wiley & Sons,Inc.,2014.
[35] ASTM. Standard test method for measurement of normal incidence sound transmission of acoustical materials based on the transfer matrix method. E2611-09.
","bibtexUrl_cn":"//www.sanmikaiseki.com/jns/CN/article/getTxtFile.do?fileType=BibTeX&id=1755","articleType":"research-article","abstractUrl_en":"https://jns.nju.edu.cn/EN/10.13232/j.cnki.jnju.2025.06.013","qi":"6","id":1755,"nian":2025,"bianHao":"1765958120898-716468503","zuoZheEn_L":"Wenqing Diao, Zihao Liu, Ningwo Pei","juanUrl_en":"https://jns.nju.edu.cn/EN/Y2025","clcIndexList_en":[{"code":"0429","text":""}],"shouCiFaBuRiQi":"2025-12-17","qiShiYe":"1029","received":"2025-05-13","qiUrl_cn":"//www.sanmikaiseki.com/jns/CN/Y2025/V61/I6","lanMu_cn":"","pdfSize":"1214","zuoZhe_CN":"刁文青1(), 刘子豪2, 裴宁我1","risUrl_cn":"//www.sanmikaiseki.com/jns/CN/article/getTxtFile.do?fileType=Ris&id=1755","title_cn":"基于遗传算法优化的一种通风声屏障","doi":"10.13232/j.cnki.jnju.2025.06.013","jieShuYe":"1038","keywordList_en":["acoustic metamaterials","Helmholtz resonators","broadband sound insulation","Genetic Algorithm optimization"],"endNoteUrl_cn":"//www.sanmikaiseki.com/jns/CN/article/getTxtFile.do?fileType=EndNote&id=1755","zhaiyao_en":"

Insulating sound transmission in low⁃frequency bands without blocking the airflow in a pipe remains one of the research focuses in the field of noise control. In particular,the pipe built⁃in sound insulation structure design has important value for theoretical research and practical application. Therefore,our work designs a sound barrier based on the Helmholtz resonators combined with the genetic algorithm. First,the ability of different geometries of necks to block acoustic waves is compared under the condition of identical surface areas. Then,the transmission loss effects of series,parallel,and linearly arranged resonant cavities are analyzed. The acoustic performance of various resonator⁃arranged methods is evaluated through theory and simulation,leading to the determination of the form for the final design architecture. Finally,the parameters of the parallel resonators are jointly optimized through the genetic algorithm. By accurately designing the geometric parameters of the neck and the cavity,two groups of parallel resonator arrays are finally designed as sound barriers. Under the condition of subwavelength size,the proposed sound barrier achieves a sound intensity transmission coefficient of 0.1 in the low⁃frequency range 314~1000 Hz while maintaining ventilation conditions.

","bibtexUrl_en":"https://jns.nju.edu.cn/EN/article/getTxtFile.do?fileType=BibTeX&id=1755","abstractUrl_cn":"https://jns.nju.edu.cn/CN/10.13232/j.cnki.jnju.2025.06.013","zuoZheCn_L":"刁文青, 刘子豪, 裴宁我","juanUrl_cn":"https://jns.nju.edu.cn/CN/Y2025","lanMu_en":"","clcIndexList_cn":[{"code":"0429","text":""}],"qiUrl_en":"https://jns.nju.edu.cn/EN/Y2025/V61/I6","zuoZhe_EN":"Wenqing Diao1(), Zihao Liu2, Ningwo Pei1","risUrl_en":"https://jns.nju.edu.cn/EN/article/getTxtFile.do?fileType=Ris&id=1755","title_en":"Investigation of a sound barrier based on Genetic Algorithm optimization","hasPdf":"true"},"authorNotes_cn":["E⁃mail:502022220083@smail.nju.edu.cn
"],"authorList_en":[{"deceased":false,"name_cn":"刁文青","name_en":"Wenqing Diao"},{"deceased":false,"name_cn":"刘子豪","name_en":"Zihao Liu"},{"deceased":false,"name_cn":"裴宁我","name_en":"Ningwo Pei"}]}">

基于遗传算法优化的一种通风声屏障

刁文青, 刘子豪, 裴宁我

南京大学学报(自然科学版)››2025, Vol. 61››Issue (6): 1029-1038.

PDF(1214 KB)
PDF(1214 KB)
南京大学学报(自然科学版) ›› 2025, Vol. 61 ›› Issue (6) : 1029-1038. DOI: 10.13232/j.cnki.jnju.2025.06.013

基于遗传算法优化的一种通风声屏障

    {{javascript:window.custom_author_cn_index=0;}}
  • {{article.zuoZhe_CN}}
作者信息 +

Investigation of a sound barrier based on Genetic Algorithm optimization

    {{javascript:window.custom_author_en_index=0;}}
  • {{article.zuoZhe_EN}}
Author information +
文章历史 +

本文亮点

{{article.keyPoints_cn}}

HeighLight

{{article.keyPoints_en}}

摘要

{{article.zhaiyao_cn}}

Abstract

{{article.zhaiyao_en}}

关键词

Key words

本文二维码

引用本文

导出引用
{{article.zuoZheCn_L}}.{{article.title_cn}}[J]. {{journal.qiKanMingCheng_CN}}, 2025, 61(6): 1029-1038 https://doi.org/10.13232/j.cnki.jnju.2025.06.013
{{article.zuoZheEn_L}}.{{article.title_en}}[J]. {{journal.qiKanMingCheng_EN}}, 2025, 61(6): 1029-1038 https://doi.org/10.13232/j.cnki.jnju.2025.06.013
中图分类号:

参考文献

参考文献

{{article.reference}}

基金


编委:
主编:
责任编辑:
编辑:

版权

{{article.copyrightStatement_cn}}
{{article.copyrightLicense_cn}}
PDF(1214 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map