|
Shuai Yuan
|
|
|
Phone Number:
Office Address: D409
E-mail: syuan@nju.edu.cn
Group Page: https://www.x-mol.com/groups/yuangroup
|
|
Personal Profile
Shuai Yuan received his B. S. in Chemistry from Shandong University in 2013. He joined Texas A&M University and received his Ph.D. in Chemistry in 2018 under the supervision of Professor Hong-Cai Zhou. His thesis work focuses on the synthesis of multi-component metal–organic frameworks (MOFs) for cooperative catalysis. He then moved to MIT for postdoctoral research, where he explored the application of MOFs for electrocatalysis in the group of Professor Yang Shao Horn and Professor Yuriy Román. In 2022, he joined Nanjing University. His research focuses on the design of three-dimensional synergistic catalytic sites using multi-component MOFs. Show All
Work Experience
2018-2021: Post-doctor, MIT, US (with Prof. Yang Shao-Horn and Prof. Yuriy Román) 2021-Present: School of Chemistry and Chemical Engineering, Nanjing University Show All
Research
Multi-component metal–organic frameworks (MOFs) promise the precise design of solid materials with atomic-level precision, capable of promoting fascinating developments in basic sciences and applications. Specifically, the combination of diverse metals and functional groups in the cavity of a multi-component MOF can potentially mimic the sophisticated pore environment of enzymes, leading to emergent synergistic effects in catalysis. Prof. Yuan’s research aims to design three-dimensional synergistic catalytic sites using multi-component MOFs in expecting to break the intrinsic limitation of traditional surface catalysts (Fig. a).1-2 To realize this design, a series of synthetic strategies have been developed to construct multi-component MOFs in a predictable and stepwise manner3-9 which is conceptually parallel to the total synthesis approach to make complex organic molecules. Furthermore, the concept of 3D synergistic sites will be extended into cooperative MOF-composite interfaces to expand the structures, compositions, and functionalities of MOFs-based functional materials (Fig. b). Finally, the resulting MOF-based functional materials will be applied in energy conversion and storage devices (Fig. c).10
References 1. Yuan, S.; Qin, J.-S.; Li, J.; Huang, L.; Feng, L.; Fang, Y.; Lollar, C.; Pang, J.; Zhang, L.; Sun, D.; Alsalme, A.; Cagin, T.; Zhou, H.-C., Nat. Commun. 2018, 9, 808. 2. Yuan, S.; Zhang, P.; Zhang, L.; Garcia-Esparza, A. T.; Sokaras, D.; Qin, J.-S.; Feng, L.; Day, G. S.; Chen, W.; Drake, H. F.; Elumalai, P.; Madrahimov, S. T.; Sun, D.; Zhou, H.-C., J. Am. Chem. Soc. 2018, 140, 10814-10819. 3. Yuan, S.; Chen, Y.-P.; Qin, J.-S.; Lu, W.; Zou, L.; Zhang, Q.; Wang, X.; Sun, X.; Zhou, H.-C., J. Am. Chem. Soc. 2016, 138, 8912-8919. 4. Yuan, S.; Qin, J.-S.; Zou, L.; Chen, Y.-P.; Wang, X.; Zhang, Q.; Zhou, H.-C., J. Am. Chem. Soc. 2016, 138, 6636-6642. 5. Yuan, S.; Lu, W.; Chen, Y.-P.; Zhang, Q.; Liu, T.-F.; Feng, D.; Wang, X.; Qin, J.; Zhou, H.-C., J. Am. Chem. Soc. 2015, 137, 3177-3180. 6. Yuan, S.; Huang, L.; Huang, Z.; Sun, D.; Qin, J.-S.; Feng, L.; Li, J.; Zou, X.; Cagin, T.; Zhou, H.-C., J. Am. Chem. Soc. 2020, 142, 4732-4738. 7. Pang, J.; Yuan, S.*; Qin, J.; Wu, M.; Lollar, C. T.; Li, J.; Huang, N.; Li, B.; Zhang, P.; Zhou, H.-C.*, J. Am. Chem. Soc. 2018, 140, 12328-12332. 8. Feng, L.; Yuan, S.*; Qin, J.-S.; Wang, Y.; Kirchon, A.; Qiu, D.; Cheng, L.; Madrahimov, S. T.; Zhou, H.-C.*, Matter 2019, 1, 156-167. 9. Yuan, S.; Zou, L.; Qin, J.-S.; Li, J.; Huang, L.; Feng, L.; Wang, X.; Bosch, M.; Alsalme, A.; Cagin, T.; Zhou, H.-C., Nat. Commun. 2017, 8, 15356. 10. Yuan, S.; Peng, J.; Cai, B.; Huang, Z.; Garcia-Esparza, A. T.; Sokaras, D.; Zhang, Y.; Giordano, L.; Akkiraju, K.; Zhu, Y.; Hübner, R.; Zou, X.; Román-Leshkov, Y.; Shao-Horn, Y., Nat. Mater. 2022, DOI: 10.1038/s41563-022-01199-0.
Publications
For the full publication list, please visit: https://www.x-mol.com/groups/yuangroup/publications 2025 1. Yin, Y.+; Feng, S.+; Xu, X.; Liu, Y.; Li, Y.; Gao, L.; Zhou, X.; Dong, J.; Wu, Y.; Su, J.; Zuo, J.-L.; Yuan, S.*; Zhu, J.*, Multivariate Tuning of Photosensitization in Mixed-Linker Metal‒Organic Frameworks for Efficient CO2 Reduction. J. Am. Chem. Soc. 2025,147, 16481–16493. 2. Ke, S.-W.; Li, W.,*; Gao, L.; Su, J.; Luo, R.; Yuan, S.*; He, P.*; Zuo, J.-L.*, Integrating Multiple Redox-Active Units into Conductive Covalent Organic Frameworks for High-Performance Sodium-Ion Batteries. Angew. Chem. Int. Ed.2025, 63, e202417493. 3. Gu, Y.-H.+; Xu, X.+; Yuan, S.*, Protonation of Nitrogen-Containing Covalent Organic Frameworks for Enhanced Catalysis. Chem. Eur. J. 2025, 31, e202500062. 2024 4. Qiao, M.; Li, Y.; Li, Y.; Chang, M.; Zhang, X.*; Yuan, S.*, Unlocking of Hidden Mesopores for Enzyme Encapsulation by Dynamic Linkers in Stable Metal‒Organic Frameworks. Angew. Chem. Int. Ed.2024, 63, e202409951. 5. Wang, B.; Liu, J.; Mao, C.; Wang, F.*; Yuan, S.*; Wang, X.*; Hu, Z., A MOF-Gel Based Separator for Suppressing Redox Mediator Shuttling in Li–O2 Batteries. Small2024, 20, 2401231. 6. Luo, R.; Luo, X.; Xu, H.; Wan, S.; Lv, H.; Zou, B.; Wang, Y.; Liu, T.; Wu, C.; Chen, Q.; Yu, S.; Dong, P.; Tian, Y.; Xi, K.; Yuan, S.*; Wu, X.*; Ju, H.; Lei, J.*, Reticular Ratchets for Directing Electrochemiluminescence. J. Am. Chem. Soc.2024, 146, 16681-16688. 7. Dong, P.; Xu, X.; Wu, T.; Luo, R.; Kong, W.; Xu, Z.; Yuan, S.*; Zhou, J.*; Lei, J.*, Stepwise Protonation of Three-Dimensional Covalent Organic Frameworks for Enhancing Hydrogen Peroxide Photosynthesis. Angew. Chem. Int. Ed.2024, 63, e202405313. 8. Zhou, X.; Wang, Y.; Gu, Y.; Su, J.; Liu, Y.; Yin, Y.; Yuan, S.*; Ma, J.*; Jin, Z.*; Zuo, J.-L.*, All-purpose redox-active metal-organic frameworks as both cathodic and anodic host materials for advanced lithium-sulfur batteries. Matter, 2024, 7, 3069-3082. 9. Gao, W.+; Li, Y.+; Zhang, X.*; Qiao, M.; Ji, Y.; Zheng, J.; Gao, L.; Yuan, S.*; Huang, H., DNA-Directed Assembly of Hierarchical MOF-Cellulose Nanofiber Microbioreactors with “Branch-Fruit” Structures. Nano Lett. 2024, 24, 3404-3412. 10. Ke, S.-W.+; Xin, J.+; Tang, L.+; Gao, L.; Cai, G.; Ding, M.; Yuan, S.*; Sun, J.*; Zuo, J.-L.*, Atomic-Resolution Crystal Structure of a Redox-Active Covalent Organic Framework with Ni-bis(dithiolene) Units. ACS Mater. Lett. 2024,6, 921-927. 11. Lei, L.; Zhao, B.; Pei, X.; Gao, L.; Wu, Y.; Xu, X.; Wang, P.; Wu, S.*; Yuan, S.*, Optimizing Porous Metal-Organic Layers for Stable Zinc Anodes. ACS Appl. Mater. Interfaces 2024,16, 485-495. 2023 12. Li, Y.; Su, J.; Zhao, Y.; Feng, L.; Gao, L.; Xu, X.; Yin, Y.; Liu, Y.; Xiao, P.; Yuan, L.; Qin, J.-S.; Wang, Y.; Yuan, S.*; Zheng, H.*; Zuo, J.-L.*, Dynamic Bond-Directed Synthesis of Stable Mesoporous Metal–Organic Frameworks under Room Temperature. J. Am. Chem. Soc. 2023,145, 10227-10235. 13. Dong, P.+; Xu, X.+; Luo, R.; Yuan, S.*; Zhou, J.*; Lei, J.*, Postsynthetic Annulation of Three-Dimensional Covalent Organic Frameworks for Boosting CO2 Photoreduction. J. Am. Chem. Soc. 2023,145, 15473-15481 14. Chen, W.; Wang, Z.; Wang, Q.; El-Yanboui, K.; Tan, K.; Barkholtz, H. M.; Liu, D.-J.; Cai, P.; Feng, L.; Li, Y.; Qin, J.-S.; Yuan, S.*; Sun, D.*; Zhou, H.-C.*, Monitoring the Activation of Open Metal Sites in [FexM3–x(μ3-O)] Cluster-Based Metal–Organic Frameworks by Single-Crystal X-ray Diffraction. J. Am. Chem. Soc. 2023, 145, 4736–4745 15. Zhou, X.-C.; Liu, C.; Su, J.; Liu, Y.-F.; Mu, Z.; Sun, Y.; Yang, Z.-M.; Yuan, S.*; Ding, M.*; Zuo, J.-L.*, Redox-Active Mixed-Linker Metal–Organic Frameworks with Switchable Semiconductive Characteristics for Tailorable Chemiresistive Sensing. Angew. Chem. Int. Ed., 2023,62, e202211850. 16. Shi, X.; Ling, Y.; Li, Y.; Li, G.; Li, J.; Wang, L.; Min, F.; Hübner, R.; Yuan, S.*; Zhan, J.; Cai, B.*, Complete Glucose Electrooxidation Enabled by Coordinatively Unsaturated Copper Sites in Metal–Organic Frameworks. Angew. Chem. Int. Ed. 2023,62, e202316257. 17. Wang, K.-Y.; Yang, Z.; Zhang, J.; Banerjee, S.; Joseph, E. A.; Hsu, Y.-C.; Yuan, S.*; Feng, L.*; Zhou, H.-C.*, Creating hierarchical pores in metal–organic frameworks via postsynthetic reactions. Nat. Protoc. 2023,18, 604-625. 18. Huang, Z.; Cao, S.; Feng, C.; Li, Y.; Liang, Y.; Li, X.; Mei, H.; Fan, W.; Ben, X.; Yuan, S.*; Dai, F.; Lu, X.; Hu, S.; Sun, D.*, Polydopamine Bridging Strategy Enables Pseudomorphic Transformation of Multi-Component MOFs into Ultrasmall NiSe/WSe2@NC Heterojunctions for Enhanced Alkaline Hydrogen Evolution. Appl. Catal. B 2023,334, 122769. 19. Li, Y.-Y.+; Xiao, J.-M.+; Xie, M.; Wu, L.-F.; Chen, Y.-F.; Yuan, S.*; Bin, D.-S.*; Zuo, J.-L.*, A Robust Conductive Covalent Organic Framework for Ultra-Stable Potassium Storage. J. Mater. Chem. A 2023,11, 24661-24666. 20. Ma, T.-R.; Ge, F.; Ke, S.-W.; Lv, S.; Yang, Z.-M.; Zhou, X.-C.; Liu, C.; Wu, X.-J.*; Yuan, S.*; Zuo, J.-L.*, Accessible Tetrathiafulvalene Moieties in a 3D Covalent Organic Framework for Enhanced Near-Infrared Photo-Thermal Conversion and Photo-Electrical Response. Small 2023,19, 2308013. 2022 21. Yuan, S.; Peng, J.; Cai, B.; Huang, Z.; Garcia-Esparza, A. T.; Sokaras, D.; Zhang, Y.; Giordano, L.; Akkiraju, K.; Zhu, Y.; Hübner, R.; Zou, X.; Román-Leshkov, Y.; Shao-Horn, Y., Tunable Metal-Hydroxide-Organic Frameworks for Catalyzing Oxygen Evolution. Nat. Mater. 2022,21, 673-680. 22. Ke, S.-W.; Wang, Y.; Su, J.; Liao, K.; Lv, S.; Song, X.; Ma, T.; Yuan, S.*; Jin, Z.*; Zuo, J.-L.*, Redox-Active Covalent Organic Frameworks with Nickel–Bis(dithiolene) Units as Guiding Layers for High-Performance Lithium Metal Batteries. J. Am. Chem. Soc. 2022,144, 8267-8277. 23. Lei, L.; Chen, F.; Wu, Y.; Shen, J.; Wu, X.-J.; Wu, S.*; Yuan, S.*, Surface coatings of two-dimensional metal-organic framework nanosheets enable stable zinc anodes. Sci. China Chem. 2022,65, 2205-2213. Before 2022 24. Yuan, S.; Li, Y.; Peng, J.; Questell-Santiago, Y. M.; Akkiraju, K.; Giordano, L.; Zheng, D. J.; Bagi, S.; Román-Leshkov, Y.; Shao-Horn, Y., Conversion of Methane into Liquid Fuels—Bridging Thermal Catalysis with Electrocatalysis. Adv. Energy Mater. 2020, 10, 2002154. 25. Yuan, S.; Huang, L.; Huang, Z.; Sun, D.; Qin, J.-S.; Feng, L.; Li, J.; Zou, X.; Cagin, T.; Zhou, H.-C., Continuous variation of lattice dimensions and pore sizes in metal–organic frameworks. J. Am. Chem. Soc. 2020,142, 4732-4738. 26. Li, J.; Yuan, S.*; Qin, J.-S.; Pang, J.; Zhang, P.; Zhang, Y.; Huang, Y.; Drake, H. F.; Liu, W. R.; Zhou, H.-C.*, Stepwise Assembly of Turn-on Fluorescence Sensors in Multicomponent Metal–Organic Frameworks for in Vitro Cyanide Detection. Angew. Chem. Int. Ed. 2020, 59, 9319-9323. 27. Fan, W.+; Yuan, S.+; Wang, W.; Feng, L.; Liu, X.; Zhang, X.; Wang, X.; Kang, Z.; Dai, F.; Yuan, D.; Sun, D.; Zhou, H.-C., Optimizing multivariate metal–organic frameworks for efficient C2H2/CO2 separation. J. Am. Chem. Soc. 2020. 142, 8728–8737. (+co-first author) 28. Su, J.+; Yuan, S.+; Wang, T.; Lollar, C. T.; Zuo, J.-L.; Zhang, J.; Zhou, H.-C., Zirconium metal–organic frameworks incorporating tetrathiafulvalene linkers: robust and redox-active matrices for in situ confinement of metal nanoparticles. Chem. Sci. 2020,11, 1918-1925. (+co-first author) 29. Yuan, S.*; Peng, J.; Zhang, Y.; Shao-Horn, Y.*, Stability Trend of Metal–Organic Frameworks with Heterometal-Modified Hexanuclear Zr Building Units. J. Phys. Chem. C 2019, 123, 28266-28274. 30. Feng, L.; Yuan, S.*; Qin, J.-S.; Wang, Y.; Kirchon, A.; Qiu, D.; Cheng, L.; Madrahimov, S. T.; Zhou, H.-C.*, Lattice expansion and contraction in metal-organic frameworks by sequential linker reinstallation. Matter 2019. 1 , 156-167. 31. Pang, J.+; Yuan, S.+; Qin, J.; Lollar, C. T.; Huang, N.; Li, J.; Wu, M.; Yuan, D.; Hong, M., Zhou, H.-C., Tuning the Ionicity of Stable Metal-Organic Frameworks through Linker Installation. J. Am. Chem. Soc. 2019, 141, 3129–3136. (+co-first author) 32. Qin, J.+; Yuan, S.+; Zhang, L.; Li, B.; Du, D.-Y.; Huang, N.; Guan, W.; Drake, H.; Pang, J.; Lan, Y.-Q.; Alsalme, A.; Zhou, H.-C., Creating well-defined hexabenzocoronene in zirconium metal-organic framework by postsynthetic annulation. J. Am. Chem. Soc.2019, 141, 2054–2060 (+co-first author) 33. Xiao, Z.+; Mei, Y.+; Yuan, S.+; Mei, H.; Xu, B.; Bao, Y.; Fan, L.; Kang, W.; Dai, F.; Wang, R.; Wang, L.; Hu, S.; Sun, D.; Zhou, H.-C., Controlled Hydrolysis of Metal–Organic Frameworks: Hierarchical Ni/Co-Layered Double Hydroxide Microspheres for High-Performance Supercapacitors. ACS Nano 2019. DOI: 10.1021/acsnano.9b02106. (+co-first author) 34. Yuan, S.+; Zhang, P.+; Zhang, L.; Garcia-Esparza, A. T.; Sokaras, D.; Qin, J.-S.; Feng, L.; Day, G. S.; Chen, W.; Drake, H. F.; Elumalai, P.; Madrahimov, S. T.; Sun, D.; Zhou, H.-C., Exposed equatorial positions of metal centers via sequential ligand elimination and installation in MOFs. J. Am. Chem. Soc. 2018, 140, 10814-10819. (+co-first author) 35. Yuan, S.+; Qin, J.-S.+; Li, J.; Huang, L.; Feng, L.; Fang, Y.; Lollar, C.; Pang, J; Zhang, L.; Sun, D.; Alsalme, A.; Cagin, T.; Zhou, H.-C. Retrosynthesis of multi-component metal−organic frameworks, Nat. Commun.2018, 9, 808. (+co-first author) 36. Yuan, S.+; Qin, J.-S.+; Su, J.; Li, B.; Li, J.; Chen, W.; Drake, H. F.; Zhang, P.; Yuan, D.; Zuo, J.; Zhou, H.-C., Sequential transformation of zirconium(IV)-MOFs into heterobimetallic MOFs bearing magnetic anisotropic cobalt(II) centers. Angew. Chem. Int. Ed.2018, 57, 12578-12583. (+co-first author) 37. Yuan, S.+; Qin, J.-S.+; Xu, H.-Q.; Su, J.; Rossi, D.; Chen, Y.; Zhang, L.; Lollar, C.; Wang, Q.; Jiang, H.-L.; Son, D. H.; Xu, H.; Huang, Z.; Zou, X.; Zhou, H.-C., [Ti8Zr2O12(COO)16] Cluster: An ideal inorganic building unit for photoactive metal–organic frameworks. ACS Cent. Sci., 2018, 4, 105-111. (+co-first author) 38. Yuan, S.; Qin, J.-S.; Lollar, C.; Zhou, H.-C., Stable metal−organic frameworks with group 4 metals: current status and trends, ACS Cent. Sci., 2018,4, 440-450. 39. Yuan, S.; Feng, L.; Wang, K.; Pang, J; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.-S.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H.-C. Stable metal-organic frameworks: design, synthesis, and applications, Adv. Mater.2018, 30, 1704303. (cover article) 40. Pang, J.; Yuan, S.*; Qin, J.; Wu, M.; Lollar, C. T.; Li, J.; Huang, N.; Li, B.; Zhang, P.; Zhou, H.-C.*, Enhancing pore-environment complexity using a trapezoidal linker: toward stepwise assembly of multivariate quinary metal–organic frameworks. J. Am. Chem. Soc. 2018,140, 12328-12332. 41. Yang, X.+; Yuan, S.+; Zou, L.; Drake, H.; Zhang, Y.; Qin, J.; Alsalme, A.; Zhou, H., One-step synthesis of hybrid core-shell metal-organic frameworks. Angew. Chem. Int. Ed., 2018,57, 3927-3932. (+co-first author) 42. Zhang, L.+; Yuan, S.+; Feng, L.+; Guo, B.; Qin, J. S.; Xu, B.; Lollar, C.; Sun, D.; Zhou, H. C., Pore‐environment engineering with multiple metal sites in rare-earth porphyrinic metal–organic frameworks. Angew. Chem. Int. Ed. 2018,57, 5095-5099. (+co-first author) 43. Yuan, S.; Zou, L.; Qin, J.-S.; Li, J.; Huang, L.; Feng, L.; Wang, X.; Bosch, M.; Alsalme, A.; Cagin, T.; Zhou, H.-C. Construction of hierarchically porous metal−organic frameworks through linker labilization, Nat. Commun. 2017, 8, 15356. 44. Yuan, S.+; Sun, X.+; Pang, J; Lollar, C.; Qin, J.-S.; Perry, Z.; Joseph, E.; Wang, X.; Fang, Y.; Bosch, M.; Sun, D.; Liu, D.; Zhou, H.-C. PCN-250 under pressure: sequential phase transformation and the implications on MOF densification, Joule, 2017, 1, 806-815. (+co-first author) 45. Xu, M.+; Yuan, S.+; Chen, X.-Y.; Chang, Y.-J.; Day, G.; Gu, Z.-Y.; Zhou, H.-C. Two-dimensional metal-organic framework nanosheets as an enzyme inhibitor: modulation of the α-chymotrypsin activity. J. Am. Chem. Soc.2017, 139, 8312-8319. (+co-first author) 46. Su, J.+; Yuan, S.+; Wang, H. Y.; Huang, L.; Ge, J.; Joseph, E.; Qin, J.-S.; Cagin, T.; Zuo, J.-L.; Zhou, H.-C. Redox-switchable breathing behavior in tetrathiafulvalene-based metal–organic frameworks. Nat. Commun.2017,8, 2008. (+co-first authors) 47. Pang, J. +; Yuan, S.+; Qin, J.; Liu, C.; Lollar, C.; Wu, M.; Yuan, D.; Zhou, H.-C.; Hong, M., Control the structure of Zr-tetracarboxylate frameworks through steric tuning. J. Am. Chem. Soc.2017, 139, 16939-16945. (+co-first authors) 48. Pang, J. +; Yuan, S.+; Du, D.; Lollar, C.; Zhang, L.; Wu, M.; Yuan, D.; Zhou, H.-C.; Hong, M., Flexible zirconium MOFs as bromine-nanocontainers for bromination reactions under ambient conditions. Angew. Chem. Int. Ed.2017, 56, 14622-14626. (+co-first authors) 49. Yuan, S.+; Chen, Y.-P.+; Qin, J.-S.; Lu, W.; Zou, L.; Zhang, Q.; Wang, X.; Sun, X.; Zhou, H.-C. Linker installation: engineering pore environment with precisely placed functionalities in zirconium MOFs, J. Am. Chem. Soc.2016, 138, 8912-8919. (+co-first author) 50. Yuan, S.+; Qin, J.-S.+; Zou, L.; Chen, Y.-P.; Wang, X.; Zhang, Q.; Zhou, H.-C. Thermodynamically guided synthesis of mixed-linker Zr-MOFs with enhanced tunability, J. Am. Chem. Soc.,2016, 138, 6636–6642. (+co-first author) 51. Yuan, S.+; Zou, L.+; Li, H.; Chen, Y.-P.; Qin, J.; Zhang, Q.; Lu, W.; Hall, M. B.; Zhou, H.-C. Flexible zirconium metal-organic frameworks as bioinspired switchable catalysts, Angew. Chem. Int. Ed.,2016, 55, 10776-10780. (+co-first author) 52. Yuan, S.; Chen, Y-P., Qin, J., Lu, W., Wang, X., Zhang, Q., Zhou, H.-C. Cooperative cluster metalation and ligand migration in zirconium metal–organic frameworks. Angew. Chem. Int. Ed.2015, 54, 14696-14700. 53. Yuan, S.; Lu, W.; Chen, Y.-P.; Zhang, Q.; Liu, T.-F.; Feng, D.; Wang, X.; Qin, J.; Zhou, H.-C. Sequential linker installation: precise placement of functional groups in multivariate metal–organic frameworks. J. Am. Chem. Soc.2015, 137, 3177-3180. Course Name, Time and Place
Course Name: General Chemistry Course Code: 38030010 Schedule: Fall Semester, Weeks 1-16 Course Name: Trends in Inorganic Chemistry Course Code: 070301X03 Schedule: Fall Semester, Weeks 1-14 Syllabus, Examination Requirements
Syllabus: General Chemistry I. Course Name:General Chemistry II. Course Credits/Class Time: 3 credits / 48 hours III. Teaching materials: 1. Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste, 2024, Chemistry, 11th Edition, Cengage Learning, 1200pp. IV. Course category: General education/Mandatory courses V. Prerequisite Courses: High school chemistry VI. Course Introduction and Teaching Objectives: Course Introduction: This course introduces the basic chemical principles such as science and scientific methods, the structure and state of matter, chemical thermodynamics, chemical balance, and chemical kinetics from the historical perspective of scientific development. Through the study of this course, students can understand the microscopic structure of matters, including structures of atoms, chemical bonds, molecules and their interactions; They will also master the fundamental theory of thermodynamics, the direction and equilibrium of chemical reaction, the reaction time, and their applications in multidisciplinary fields; Additionally, the course will cover chemical knowledge relevant to atmospheric science and the Earth's water cycle. By incorporating experiments and introducing the evolution of various concepts, this course will cultivate students' spirit of inquiry, innovation, and scientific thinking. Teaching Objectives: Through this course, students will master the fundamental principles, basic laws, and important knowledge of general chemistry, laying a chemical foundation necessary for subsequent courses in atmospheric chemistry and related advanced atmospheric science and environmental science. It will help students recognize the presence of the chemical principles in their future technological fields and social life, enabling them to integrate the knowledge embedded in practical life and engineering issues with the fundamental theories of chemical transformations. Finally, the course aims to guide students in observing material changes with a chemical mindset in their work and daily life, cultivating their ability to analyze and address chemical problems in engineering and daily life. VII. Course requirements: On the basis of senior high school chemistry, the principles of chemistry are taught systematically. This course mainly adopts the blackboard writing and multimedia course teaching, the interactive, practice-focused, and research-oriented teaching strategy is adopted. Students are required to read teaching materials and related reference materials before class, be active thinking, record the emphases and difficulties during class, finish homework after class. Students are required to correctly explain experimental phenomena observed in related experiments with the general chemistry knowledge taught in class, and consolidate the theoretical knowledge of chemistry in the experiment. Specific requirements of this course: 1. Preview before class; 2. 5-7 homework; 3. One course paper; 4. Midterm exam; 5. Final exam. VIII. Assessment method: The course will be assessed through comprehensive evaluation, considering both regular performance (classroom performance + homework + course paper, accounting for 30%) and examination results (closed-book exams, accounting for 70% with the mid-term exam contributing 30% and the final exam contributing 40%). IX. Course content: Part I: Matter Structure and States 1. Science and chemistry 2. Atomic structure and periodic law 2.1 Development of atomic models and wave-particle duality of microscopic particles 2.2 Wavefunctions and the Schrödinger equation 2.3 Structure of single-electron atoms 2.4 Structure of multi-electron atoms 2.5 Periodic properties 3. Molecular and chemical bonds 3.1 From atoms (elements) to molecules 3.2 Classical chemical bonds and the valence bond theory 3.3 The molecular orbital theory of chemical bonds 3.4 Chemical bonds and molecular structure 3.5 state of materials and solid chemistry 3.6 Chemistry in atmospheric science (elemental chemistry) 3.7 Transition metals and coordination chemistry Part II: Chemical Thermodynamics and Multi-Molecular Systems 4. Fundamentals of thermodynamics 4.1 Basic concepts of thermodynamics 4.2 The first law of thermodynamics 4.3 The second law of thermodynamics 5. States of matter 5.1 Gas 5.2 Solution and colloid Part III: Chemical and phase equilibrium 6. Equilibrium in chemical reactions and phase transitions 6.1 The basis of the chemical equilibrium in the homogeneous systems 6.2 Acid-base equilibrium 6.3 Precipitation equilibrium 6.4 Redox equilibrium and electrochemistry Part IV: Chemical Kinetics Part V: Nuclear Chemistry Part VI: Organic Chemistry Teaching Resources
Group
|